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Abstract In this paper, we introduce a new system of generalized vector variational
inequalities with variable preference. This extends the model of system of generalized
variational inequalities due to Pang and Konnov independently as well as system of
vector equilibrium problems due to Ansari, Schaible and Yao. We establish existence
of solutions to the new system under weaker conditions that include a new partial
diagonally convexity and a weaker notion than continuity. As applications, we derive
existence results for both systems of vector variational-like inequalities and vector
optimization problems with variable preference.

Keywords Generalized vector variational inequalities · Partial diagonally quasi-
convexity · Variational-like inequalities · Variable preference

1 Introduction

In [16] Pang introduced a system of (scalar) variational inequalities (specifically,
an asymmetric variational inequality problems over product sets) which could uni-
formly model several equilibrium problems such as traffic equilibrium problems, spa-
tial equilibrium problems, Nash equilibrium problems and equilibrium programming
problems, etc. Pang [16] and subsequently Cohen and Chaplais [9] studied the compu-
tation of this model, while existence results were established by Bianchi [6] as well as
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Ansari and Yao [1]. Further developments on this problem are discussed, for example,
in Konnov [13], where system of generalized variational inequalities was tackled in
order to solve vector optimization problem, and in Ansari and Yao [3] where existence
result for system of generalized inequalities was established. Moreover, Ansari et al.
[4] studied the system of vector equilibrium problems that includes, as special case,
the system of vector variational inequalities that is the vector generalization of the
system of scalar variational inequalities.

In this paper, we introduce systems of weak and strong vector variational inequali-
ties with variable preference. These not only include all the above-mentioned system
models as special cases, but also could be considered as a systematic generalization of
existing models for vector variational inequalities with variable preference (see [5,10]
and references therein) and vector equilibrium problem with variable preference (see
[7,8,11,14,15,17,18] and references therein).

Throughout this paper, we denote by coA, int A the convex hull and the interior
of a set A in a topological vector space, respectively.

Let I be a given index set. For each i ∈ I, let Xi and Yi be nonempty subsets of
two locally convex Hausdorff topological spaces, and Ei be a Hausdorff topological
vector space. We also write

X =
∏

i∈I

Xi, Y =
∏

i∈I

Yi and E =
∏

i∈I

Ei.

An element of the set Xi := ∏
j∈I\{i} Xj will be denoted by xi. Thus, we can write

x = (xi, xi) ∈ Xi × Xi = X for all x ∈ X. Let {fi}i∈I be a family of trifunctions defined
on X × Xi × Yi with values in Ei. Let Ci: Xi → 2Ei and Ti: X → 2Yi be set-valued
maps.

We consider the following two system models:

(1) The system of weak generalized vector variational inequality problem, in short
SWGVVI, is to find x̄ ∈ X and ȳi ∈ Ti(x̄i) for each i ∈ I, such that

fi(x̄, zi, ȳi) /∈ −int Ci(x̄i) ∀zi ∈ Xi.

(2) The system of strong generalized vector variational inequality problem, in short
SSGVVI, is to find x̄ ∈ X and ȳi ∈ Ti(x̄i) for each i ∈ I, such that

fi(x̄, zi, ȳi) ∈ Ci(x̄i), ∀zi ∈ Xi.

The rest of the paper is organized as follows. In Sect. 2, we give a short account
of set-valued maps and their properties. In particular, we introduce the new concept
of partial diagonally quasi-convexity together with its relationship to other convexity
properties. In Sect. 3, the existence results of SWGVVI and SSGVVI are established.
Finally, we conclude with some applications in Sect. 4.

2 Preliminaries

Definition 2.1 A set-valued map F: X → 2Y is said to have open lower sections if the
set F−1(y) := {x ∈ X: y ∈ F(x)} is open in X for every y ∈ Y.

Lemma 2.1 (Ansari [2]) Let X be a topological space and Y be a convex subset of a
topological vector space. Let G : X → 2Y be a set-valued map with open lower sections.
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Then the set-valued map M: X → 2Y, defined by M(x) := co(G(x)) for all x ∈ X, has
open lower sections.

Lemma 2.2 (Klein and Thompson [12], Theorem 8.1.3, p. 97) Let X be a compact
Hausdorff space and let f : X → 2Y be a set-valued map from X to a topological vector
space Y with convex values. Suppose further that f has open lower sections. Then f has
a continuous selection.

Remark 2.1 The proof of Lemma 2.2 given in [12] can be modified to hold even for
X paracompact.

We mention also here the well known Kakutani-Fan’s fixed point theorem.

Lemma 2.3 Let X be a nonempty compact convex subset of a locally convex Haus-
dorff topological vector space E. Suppose that H : X → 2X is a upper semi-continuous
set-valued map with nonempty closed convex values. Then H has a fixed point in X.

We now introduce the following new notion of partial quasi-convexity property
which plays a crucial role in our analysis and discussion below.

Definition 2.2 Let Ci: Xi → 2Ei and g : X × Xi → Ei be given. g(x, zi) is said to be
weak (resp. strong) partial diagonally quasi-convex in zi with respect to Ci if for any
� = {xi1 , xi2 , . . . , xin} in Xi and for any x = (xi, xi) ∈ X with xi ∈ co�, there exists a
j ∈ {1, 2, . . . , n} such that

g(x, xij) /∈ −int Ci(xi), (resp. g(x, xij) ∈ Ci(xi)).

Remark 2.2 When I = {1}, X1 = X, C1(x) = IR+ for each x ∈ X, and g : X × X → IR
is a single-valued function, then the above two kinds of partial diagonally quasi-con-
vexity all reduce to 0-diagonally quasi-convexity for scalar functions in Zhou and
Chen [19].

Remark 2.3 Strong partial diagonally quasi-convexity with respect to Ci implies weak
partial diagonally quasi-convexity with respect to Ci if for all xi ∈ Xi, Ci(xi) is a pointed
cone with int C(xi) �= ∅.

3 Existence results

We are now ready to prove the following existence results of solutions for SWGVVI.

Theorem 3.1 For each i ∈ I, let Xi and Yi be nonempty compact convex metrizable
subsets of two locally convex Hausdorff topological vector spaces, and Ei be a Haus-
dorff topological vector space. Let fi : X × Xi × Yi → Ei be a trifunction, Ci : Xi → 2Ei

be a set-valued map with int Ci(xi) �= ∅ for all xi ∈ Xi, and Ti: X → 2Yi be a upper
semi-continuous map with nonempty closed convex values.

Assume that the following conditions are satisfied.

(1) For each i ∈ I and for each yi ∈ Yi, the function fi(x, zi, yi) is weak partial
diagonally quasi-convex in zi with respect to Ci.

(2) For each i ∈ I and zi ∈ Xi, the set

{(x, yi) ∈ X × Yi: fi(x, zi, yi) ∈ −int Ci(xi)}
is open.
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Then, there exist x̄ ∈ X and ȳi ∈ Ti(x̄) for each i ∈ I, such that

fi(x̄, zi, ȳi) /∈ −int Ci(x̄i), ∀zi ∈ Xi.

Proof Define, for each i ∈ I, a set valued map Pi: X × Yi → 2Xi by

Pi(x, yi) := {zi ∈ Xi: fi(x, zi, yi) ∈ −int Ci(xi)}, ∀(x, yi) ∈ X × Yi.

By condition (2), Pi has open lower sections and so does the set-valued map ϕi: X ×
Yi → 2Xi with

ϕi(x, yi) := coPi(x, yi), ∀(x, yi) ∈ X × Yi.

Let

Wi := {(x, yi) ∈ X × Yi: ϕi(x, yi) �= ∅}.
The fact that ϕi has open lower sections implies Wi is open. Moreover, since X and Yi
are metrizable spaces, Wi is paracompact. The restriction of ϕi to Wi has nonempty
convex values and open lower sections. It follows from Lemma 2.2 and Remark 2.1
that there exists a continuous selection si: Wi → Xi such that si(x, yi) ∈ ϕi(x, yi) for all
(x, yi) ∈ X × Yi.

Define �i : X × Yi → 2Xi by

�i(x, yi) =
{

si(x, yi), ∀(x, yi) ∈ Wi,
Xi, ∀(x, yi) /∈ Wi.

It is easy to show that �i has closed graph in X × Yi × Xi, and therefore upper
semi-continuous as Xi is compact. Let �: X × Y → 2X×Y be defined by

�(x, y) :=
(

∏

i∈I

�i(x, yi),
∏

i∈I

Ti(x)

)
, ∀(x, y) ∈ X × Y.

Then � is upper semi-continuous. Since for each (x, y) ∈ X × Y, �(x, y) is non-
empty, convex and closed, thus by Kakutani-Fan’s fixed point theorem there exists
(x̄, ȳ) ∈ X × Y such that (x̄, ȳ) ∈ �(x̄, ȳ), i.e. for each i ∈ I, x̄i ∈ �i(x̄, ȳi) and ȳi ∈ Ti(x̄).

Note that for each i ∈ I, if (x̄, ȳi) ∈ Wi, then

x̄i = si(x̄, ȳi) ∈ ϕi(x̄, ȳi) = co(Pi(x̄, ȳi)).

Thus there exists a finite subset

{xi1 , xi2 , . . . , xin} ⊂ Pi(x̄, ȳi)

such that

x̄i ∈ co{xi1 , xi2 , . . . , xin}
and

fi(x̄, xij , ȳi) ∈ −int Ci(x̄i), ∀j = 1, 2, . . . , n.

This is a contradiction to (1). Hence (x̄, ȳi) /∈ Wi and so for all i ∈ I, ϕi(x̄, ȳi) = ∅.
Therefore, co(Pi(x̄, ȳi)) = ∅ which implies Pi(x̄, ȳi) = ∅. Consequently, we have x̄ ∈ X
and ȳi ∈ Ti(x̄) for each i ∈ I, such that

fi(x̄, zi, ȳi) /∈ −int Ci(x̄i), ∀zi ∈ Xi.

We conclude that SWGVVI has a solution, and this completes the proof. ��
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Remark 3.1
(1) Contrary to most other papers, it is noted that we do not require the sets Ci(xi)

to be a cone in the present paper.
(2) Note that if for each i ∈ I, the function fi is continuous and the set-valued map

Wi : Xi → 2Ei , defined by Wi(xi) := Yi\{−int Ci(xi)}, is upper semi-continuous,
then the set {(x, yi) ∈ X × Yi): fi(x, zi, yi) ∈ −int Ci(xi)} is open for all zi ∈ Xi
(see Zhou and Chen [19]).

Remark 3.2 The following example shows that without the partial diagonally quasi-
convexity property of the function fi(x, zi, yi) the corresponding SWGVVI problem
may not admit a solution.

Example Let the index set be I = {1, 2}. For each i ∈ I, let Yi = {y} be a single point
in IR, and Ei = Xi = IR so that X = IR2. Further, for each i ∈ I and for all xi ∈ Xi, let
Ci(xi) = [0, +∞) and Ti(x) = {y} for all x ∈ X. The functions fi : X × Xi × Yi → Ei,
defined by

fi(x, zi, y) = −
⎛

⎝
2∑

j=1, j �=i

xj − y

⎞

⎠
2

+ (xi − zi) − 1, i = 1, 2

satisfy all the hypothesis of Theorem 3.1 except for the partial diagonally quasi-
convexity property. It is not difficult to see that the corresponding SWGVVI problem
has no solutions.

Corollary 3.1 For each i ∈ I, let Xi and Yi be nonempty compact convex metrizable sub-
sets of two locally convex Hausdorff topological vector spaces, and Ei be a Hausdorff
topological vector space. Let fi : X × Xi × Yi → Ei be a trifunction and Ci : Xi → 2Ei

be a set-valued map with int Ci(xi) �= ∅ for all xi ∈ Xi, and let Ti: X → 2Yi be a upper
semi-continuous map with nonempty closed convex values.

Assume that the following conditions are satisfied.

(1) For each i ∈ I, for all x ∈ X and yi ∈ Yi, the set {zi ∈ Xi: fi(x, zi, yi) ∈ −int Ci(xi)}
is convex.

(2) For each i ∈ I and for all zi ∈ Xi, the set {(x, yi) ∈ X×Yi : fi(x, zi, yi) ∈ −int Ci(xi)}
is open.

(3) For all x = (xi, xi) ∈ X and yi ∈ Yi, f (x, xi, yi) /∈ −int C(xi).

Then, there exists x̄ ∈ X and ȳi ∈ Ti(x̄) for each i ∈ I, such that

fi(x̄, zi, ȳi) /∈ −int Ci(x̄i), ∀zi ∈ Xi.

Proof Fix i ∈ I and yi ∈ Yi. We need only to show that fi(x, zi, yi) is weak par-
tial diagonally quasi-convex in zi with respect to Ci. Suppose not, then there exist
� = {xi1 , xi2 , . . . , xin} ⊂ Xi and x̄ = (x̄i, x̄i) ∈ X with x̄i ∈ co � such that

fi(x̄, xij , yi) ∈ −int Ci(x̄i), ∀j = 1, 2, . . . , n.

Therefore,

xij ∈ {zi ∈ Xi: fi(x̄, zi, yi) ∈ −int Ci(x̄i)} := Ui, ∀j = 1, 2, . . . , n.

By condition (1), the set Ui is convex, and so x̄i ∈ Ui, i.e.

f (x̄, x̄i, yi) ∈ −int Ci(x̄i),

which is a contradiction to (3). The corollary is proved. ��
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Remark 3.3 Condition (3) of Corollary 3.1 is satisfied, for example, if for all x =
(xi, xi) ∈ X and yi ∈ Yi, f (x, xi, yi) = 0.

Theorem 3.2 For each i ∈ I, let Xi and Yi be nonempty metrizable subsets of two
locally convex Hausdorff topological vector spaces, and Ei be a Hausdorff topological
space. Let fi : X × Xi × Yi → Ei be a trifunction, Ci : Xi → 2Ei be a set-valued map
with int Ci(xi) �= ∅ for all xi ∈ Xi, and Ti: X → 2Yi be a upper semi-continuous map
with nonempty closed convex values.

Assume that the following conditions are satisfied.

(1) For each i ∈ I and for all yi ∈ Yi, fi(x, zi, yi) is weak partial diagonally quasi-con-
vex in zi with respect to Ci.
For each i ∈ I and for all zi ∈ Xi, the set

{(x, yi) ∈ X × Yi: fi(x, zi, yi) ∈ −int Ci(xi)}
is open.

(2) For each i ∈ I, there exist a nonempty compact convex subset Ki of Xi and z̄i ∈ Ki
such that for each x ∈ X\K := X\(∏i∈I Ki),

fi(x, z̄i, yi) ∈ −int Ci(xi), ∀yi ∈ Ti(x).

Then, there exist x̄ ∈ K, and ȳi ∈ Ti(x̄) for each i ∈ I, such that

fi(x̄, zi, ȳi) /∈ −int Ci(x̄i), ∀zi ∈ Xi.

Proof For each i ∈ I and for all zi ∈ Xi, let

G(zi) := {x ∈ K: fi(x, zi, yi) /∈ −int Ci(xi) for some yi ∈ Ti(x)}.
We verify first that for each i ∈ I, G(zi) is closed for all zi ∈ Xi. Indeed, let x(λ) be a
net in G(zi) such that x(λ) → x∗ ∈ X, that is, for each i ∈ I, x(λ)i → x∗

i ∈ Xi. Then
there exists y(λ)i ∈ Ti(x(λ)) satisfying

fi(x(λ), zi, yi(λ)) /∈ −int Ci(x(λ)).

Since K is compact and Ti is upper semi-continuous, Ti(K) is therefore compact.
Thus we may assume, by passing to a subnet if necessarily, that y(λ)i converges with
limit y∗

i . Since Ti is upper semi-continuous and therefore has closed graph, we have
y∗

i ∈ Ti(x∗). By condition (2), we have fi(x∗, zi, y∗
i ) /∈ −int Ci(x∗

i ). Hence x∗ ∈ G(zi),
proving that G(zi) is closed in X.

For each i ∈ I, let {zi1 , . . . , zin} be a finite subset of Xi. Let Ai = co(Ki∪{zi1 , . . . , zin}).
Then for each i ∈ I, Ai is a compact convex metrizable subset. By Theorem 3.1, there
exist x̄ ∈ A and ȳi ∈ Ti(x̄) for each i ∈ I such that

fi(x̄, zi, ȳi) /∈ −int Ci(x̄i), ∀zi ∈ Ai.

It follows from condition (3) that x̄ ∈ K. In particular, we have

fi(x̄, zik , ȳi) /∈ −int Ci(x̄i), ∀k = 1, 2, . . . , n

proving x̄ ∈ ∩n
k=1G(zik). Hence, every finite subfamily of {G(zi)} has nonempty inter-

section. K being compact, so for each i ∈ I we have ∩zi∈Xi G(zi) �= ∅. Thus, there exist
x̄ ∈ K and ȳi ∈ Ti(x̄) for each i ∈ I, such that

fi(x̄, zi, ȳi) /∈ −int Ci(x̄i).

This completes the proof of the theorem. ��
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Now we state below existence results of solutions for the system of strong general-
ized vector variational inequalities.

Theorem 3.3 For each i ∈ I, let Xi and Yi be nonempty metrizable subsets of two
locally convex Hausdorff topological vector spaces, and Ei be a Hausdorff topological
vector space. Let fi : X × Xi × Yi → Ei be a trifunction, Ci : Xi → 2Ei be a set-valued
map with Ci(xi) �= ∅ for all xi ∈ Xi, and Ti: X → 2Yi be a upper semi-continuous map
with nonempty closed convex values.

Assume that the following conditions are satisfied.

(1) For each i ∈ I and for all yi ∈ Yi, fi(x, zi, yi) is strong partial diagonally quasi-con-
vex in zi with respect to Ci.

(2) For each i ∈ I and for all zi ∈ Xi, the set

{(x, yi) ∈ X × Yi: fi(x, zi, yi) /∈ Ci(xi)}
is open.

Then, there exist x̄ ∈ X, and ȳi ∈ Ti(x̄) for each i ∈ I, such that

fi(x̄, zi, ȳi) ∈ Ci(x̄i), ∀zi ∈ Xi.

Theorem 3.4 For each i ∈ I, let Xi and Yi be nonempty metrizable subsets of two
locally convex Hausdorff topological vector spaces, and Ei be a Hausdorff topological
vector space. Let fi : X × Xi × Yi → Ei be a trifunction, Ci : Xi → 2Ei be a set-valued
map with Ci(xi) �= ∅ for all xi ∈ Xi, and Ti: X → 2Yi be a upper semi-continuous map
with nonempty closed convex values.

Assume that the following conditions are satisfied.

(1) For each i ∈ I and for all yi ∈ Yi, fi(x, zi, yi) is strong partial diagonally quasi-con-
vex in zi with respect to Ci.

(2) For each i ∈ I and for all zi ∈ Xi, the set

{(x, yi) ∈ X × Yi: fi(x, zi, yi) /∈ Ci(xi)}
is open.

(3) For each i ∈ I, there exist a nonempty compact convex subset Ki of Xi and z̄i ∈ Ki
such that, for each x ∈ X\K := X\(∏i∈I Ki)

fi(x, z̄i, yi) /∈ Ci(xi), ∀yi ∈ Ti(x).

Then, there exist x̄ ∈ K and ȳi ∈ Ti(x̄) for each i ∈ I, such that

fi(x̄, zi, ȳi) ∈ Ci(x̄i), ∀zi ∈ Xi.

The proof of these two theorems, being similar to those of Theorems 3.1 and 3.2,
are omitted.

4 Applications

We now derive some existence results for some of the systems of vector variational
inequalities that were considered by others.
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Case I System of vector equilibrium problems.
The system of vector equilibrium problems, as introduced by Ansari et al. [4], is to

find x̄ ∈ X such that for each i ∈ I

gi(x̄, zi) /∈ −int C, ∀zi ∈ Xi,

where gi: X × Xi → E is a given bifunction taking values in a Hausdorff topological
vector space E, and C is a nonempty pointed closed convex cone in E with int C �= ∅.

Theorem 4.1 For each i ∈ I, let Xi be a nonempty compact convex metrizable subset
of a locally convex Hausdorff topological space, Z be a Hausdorff topological vector
space and C ⊂ Z be a pointed cone with int C �= ∅. Let gi: X ×Xi → Z be a bifunction.

Assume that the following conditions are satisfied.

(1) For each i ∈ I, gi(x, zi) is weak partial diagonally quasi-convex in zi with respect to
C.

(2) For each i ∈ I and for all zi ∈ Xi, the set {x ∈ X : gi(x, zi) ∈ −int C} is open.

Then, there exists x̄ ∈ X such that for each i ∈ I,

fi(x̄, zi) /∈ −int C, ∀zi ∈ Xi.

Proof This follows directly from Theorem 3.1 by setting for each i ∈ I, Yi = {y}
a singleton, Ei = Z, Ci(xi) = C for all xi ∈ Xi, Ti(x) = {y} for all x ∈ X, and
fi(x, zi, yi) = gi(x, zi) for all (x, zi) ∈ X × Xi. �

Remark 4.1 It is easy to see that Theorem 4.1 improves Theorem 2.1 in Ansari et al.
[4] under the additional assumptions that each Ei is a locally convex space and Xi is
metrizable. Indeed, we note that:

(1) The conditions (see [4]) that C is a pointed closed convex cone with int C �= ∅, for
all x ∈ X the function zi 
→ gi(x, zi) is C-quasi-convex together with g(x, xi) = 0
for all x = (xi, xi), imply that gi(x, zi) is weak partial diagonally quasi-convex in
zi with respect to C.

(2) Also when fi is continuous as assumed in [4], it clearly implies that the set
{x ∈ X: gi(x, zi) ∈ −int C} is open for all zi ∈ Xi.

Case II System of generalized variational inequalities.

The system of generalized variational inequalities, as studied by Ansari and Yao
[3], is to find x̄ ∈ X and ȳi ∈ Ti(x̄) for each i ∈ I, satisfying

ϕi(x̄i, zi, ȳi) ≥ 0, ∀zi ∈ Xi.

Here for each i ∈ I, Ti: X → 2D∗
i is a set-valued map where D∗

i is a nonempty subset
of X∗

i , the topological dual of Xi, and ϕi: Xi × Xi × D∗
i → IR is a real-valued function.

Theorem 4.2 For each i ∈ I , let Xi be a nonempty compact convex and metrizable
subset of a locally convex Hausdorff topological vector space, D∗

i be a nonempty com-
pact convex and metrizable subset in X∗

i , and Ti: X → 2D∗
i be a upper semi-continuous

set-valued map with nonempty closed convex values. Let ϕi: Xi × Xi × D∗
i → IR satisfy

the following conditions:
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(1) For each i ∈ I and for all yi ∈ D∗
i , ϕi(xi, zi, yi) is 0-diagonally convex in zi.

(2) For each i ∈ I and for all zi ∈ Xi, the set

{(xi, yi) ∈ Xi × D∗
i : ϕi(xi, zi, yi) < 0}

is open.

Then, there exist x̄ ∈ X and ȳi ∈ Ti(x̄) for each i ∈ I, satisfying

ϕi(x̄i, zi, ȳi) ≥ 0, ∀zi ∈ Xi.

Proof This follow from Theorem 3.1 by setting for each i ∈ I, Yi = D∗
i , Ci(xi) = IR+

for all xi ∈ Xi, and fi(x, zi, yi) = ϕi(xi, zi, yi). We need only to note that, if for each i ∈ I
and yi ∈ D∗

i , ϕi(xi, zi, yi) is 0-diagonally convex in zi, then fi(x, zi, yi) is weak partial
diagonally convex in zi with respect to IR+. ��
Remark 4.2 Theorem 4.2 improves Theorem 2.1 of Ansari and Yao [3] under the
additional assumptions that for each i ∈ I, Xi is metrizable, D∗

i is compact convex and
metrizable, and Ti has nonempty closed convex values.

Case III System of generalized vector variational-like inequalities.

For each i ∈ I, let Ei be a Hausdorff topological vector space, and let Xi and Yi be
nonempty subsets of the locally convex Hausdorff topological vector space Si and its
dual S∗

i , respectively. Let Ci: Xi → 2Ei be a set-valued map, L(Si, Ei) be the space of
all continuous linear mappings form Si to Ei, and < L(Si, Ei), Si > be a dual system
of L(Si, Ei) and Si. Given θi: X × Yi → L(Si, Ei), ηi: Xi × Xi → Si, and a set-valued
map Ti : X → 2Yi , the system of weak generalized vector variational-like inequalities
is to find x̄ ∈ X and ȳi ∈ Ti(x̄) for each i ∈ I, such that

〈θi(x̄, ȳi), ηi(zi, x̄i)〉 /∈ −int Ci(x̄i), ∀zi ∈ Xi.

Theorem 4.3 For each i ∈ I, let Ei be a Hausdorff topological vector space, and let Xi,
Yi be nonempty metrizable subsets of the locally convex Hausdorff topological vector
space Si and its dual S∗

i , respectively. Let Ci: Xi → 2Ei be a set-valued map such that
for all xi ∈ Xi, Ci(xi) is a proper closed convex cone in Ei with int Ci(xi) �= ∅. Let the
set-valued map Ti: X → 2Yi be upper semi-continuous with nonempty closed convex
values.

Assume that the functions θi: X × Yi → L(Si, Ei) and ηi: Xi × Xi → Si satisfy the
following conditions:

(1) For each i ∈ I, ηi: Xi×Xi → Si is affine in the first argument such that ηi(xi, xi) = 0,
∀xi ∈ Xi.

(2) For each i ∈ I and for all zi ∈ Xi, the set

{(x, yi) ∈ X × Yi: 〈θi(x, yi), ηi(zi, xi)〉 ∈ int Ci(xi)}
is open.

(3) For each i ∈ I, there exists a nonempty compact convex subset Ki of Xi and z̄i ∈ Ki
such that, for each x ∈ X\K := X\(∏i∈I Ki),

〈θi(x, yi), ηi(z̄i, xi)〉 ∈ −int Ci(xi), ∀yi ∈ Ti(x)

Then, there exist x̄ ∈ X and ȳi ∈ Ti(x̄) for each i ∈ I, such that

〈θi(x̄, ȳi), ηi(zi, x̄i)〉 /∈ −int Ci(x̄i), ∀zi ∈ Xi.
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Proof This result follows from Theorem 3.2 by setting for each i ∈ I,

fi(x, zi, yi) = 〈θi(x, yi), ηi(zi, xi)〉.
Letting I = {1} in Theorem 4.3 leads to the existence result of solutions for this

generalized vector variational-like inequalities as studied in [5,10]. ��
Corollary 4.1 Let X and Y be nonempty metrizable subsets of the locally convex
Hausdorff topological vector space S and its dual S∗, respectively. Let E be a Hausdorff
topological vector space, and C: X → 2E be a set-valued map such that for all x ∈ X,
C(x) is a proper closed convex cone in E with int C(x) �= ∅. Let the set-valued map
T: X → 2Y be upper semi-continuous with nonempty closed convex values. Assume
the functions θ : X × Yi → L(S, E) and η: X × X → S satisfy the following conditions.

(1) Let ηi: Xi ×Xi → Si be affine in the first argument such that ηi(xi, xi) = 0, ∀xi ∈ Xi.
(2) For z ∈ X the set

{(x, y) ∈ X × Yi: 〈θi(x, y), ηi(z, x)〉 ∈ int Ci(xi)}
is open.

(3) There exist a nonempty compact convex subset K of X and z̄ ∈ K such that, for
each x ∈ X\K,

〈θi(x, y), ηi(z̄, x)〉 ∈ −int C(x), ∀y ∈ T(x).

Then, there exist x̄ ∈ X and ȳ ∈ T(x̄) such that

〈θ(x̄, ȳ), η(z, x̄)〉 /∈ −int C(x̄), ∀z ∈ X.

Remark 4.3 Corollary 4.1 improves Theorem 3 of Ansari et al. [5] under the additional
assumptions that S is locally convex and T is upper semi-continuous with nonempty
closed convex values.

We also have the following result directly.
For each i ∈ I, let Ai: X → L(Xi, Yi) be a given mapping, where L(Xi, Yi) denotes

the space of all continuous linear operators from Xi into Yi. The system of vector
variational inequalities (SVVI) with variable preference is to find x̄ ∈ X such that for
each i ∈ I,

〈Ai(x̄), yi − x̄i〉 /∈ −int Ci(x̄i), ∀yi ∈ Xi.

Corollary 4.2 For each i ∈ I, let Xi be a nonempty convex metrizable subset of a locally
convex Hausdorff topological vector space Ei, let Ai : X → L(Xi, Yi) be continuous
on X, and let Ci: Xi → 2Yi be a set-valued map such that Ci(xi) is a convex cone with
int Ci(xi) �= ∅ for all xi ∈ Xi. Suppose further that the set-valued map Wi: Xi → 2Yi ,
defined by Wi(xi) := Yi\ − int Ci(xi) for all xi ∈ Xi, is upper semi-continuous, and for
each i ∈ I there exists a nonempty compact convex subset Ki of Xi and ȳi ∈ Ki such
that for all x = (xi, xi) ∈ X\K =: X\∏

i∈I Ki,

〈Ai(x), ȳi − xi〉 ∈ −int Ci(xi).

Then, there exists a solution x̄ ∈ X for SVVI.
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